

OEM-IMU-HG4930

Small, Affordable MEMS
IMU Combines With
SPAN Technology by
Hexagon | NovAtel to Provide
3D Position, Velocity and
Attitude

Synchronized Position and Attitude Navigation (SPAN) technology brings together two different but complementary technologies: Global Navigation Satellite System (GNSS) positioning and Inertial Navigation Systems (INS). The absolute accuracy of GNSS positioning and the stability of Inertial Measurement Unit (IMU) gyro and accelerometer measurements combine to provide an exceptional 3D navigation solution that is stable and continuously available, even through periods when satellite signals are blocked.

Sophisticated, Tactical Grade MEMS Performance

The OEM-IMU-HG4930 is a high performing Micro Electromechanical Systems (MEMs) IMU. Economical, robust and small, the low power OEM-IMU-HG4930 provides tactical grade performance for unmanned vehicles and commercial and/or military guidance applications. When integrated with SPAN technology by NovAtel, this IMU is ideal for airborne, marine and ground applications that require accurate 3D position, velocity and attitude data in a compact package.

OEM-IMU-HG4930 Advantages

The OEM-IMU-HG4930 is comprised entirely of commercial components, simplifying export processes for this IMU.

Improved Accuracy

NovAtel receivers provide your choice of accuracy and performance, from decimeter to RTK-level positioning. For the most demanding applications, Inertial Explorer® post-processing software from our Waypoint® Products Group offers the highest level of accuracy.

Benefits

- · High performance IMU
- Optimal for aerial, hydrographic survey and industrial applications
- Easy integration with NovAtel's SPAN capable GNSS+INS receivers
- · Commercially exportable
- Low 5 VDC power input

Features

- MEMS gyros and accelerometers
- · Small size, rugged and light weight
- IMU data rate: 100Hz
- Direct serial interface to OEM7 receivers
- SPAN GNSS+INS capability with configurable application profiles
- Non-ITAR IMU

SPAN System Performance¹

Horizontal Position Accuracy (RMS)

Single Point L1 1.5 m Single Point L1/L2 1.2 m SBAS² 60 cm **DGPS** 40 cm TerraStar-L^{3,4} 40 cm TerraStar-C PRO3,4 2.5 cm TerraStar-X3,4 2 cm RTK 1 cm + 1 ppm

Data Rate

IMU Raw Data Rate 100Hz INS Solution Up to 200 Hz

Time Accuracy⁴ 20 ns RMS

Max Velocity⁵ 515 m/s

IMU Performance⁶

Gyroscope Performance

Technology MEMS Input rate ±200°/sec

Accelerometer Performance

Technology MEMS Range ±20 g

Physical and Electrical⁶

Dimensions 64.8 mm dia max × 35.7 mm h max

Weight 200 g

Power

Power consumption <3 W (typical) Input voltage +5 VDC

Environmental⁶

Temperature

Operating $-40^{\circ}\text{C to } +71^{\circ}\text{C}$ Storage $-40^{\circ}\text{C to } +80^{\circ}\text{C}$

Random Vibe MIL-STD-810G(Ch1),

Method 514.7 (2.0g)

Performance During GNSS Outages7

Outage Duration	Positioning Mode	Position Accuracy (M) RMS		Velocity Accuracy (M/S) RMS		Attitude Accuracy (Degrees) RMS		
		Horizontal	Vertical	Horizontal	Vertical	Roll	Pitch	Heading
0 s	RTK ⁸	0.02	0.03	0.015	0.010	0.010	0.010	0.030
	PPP	0.06	0.15					
	SP	1.00	0.60					
	Post-Processed ⁹	0.01	0.02	0.015	0.010	0.005	0.005	0.010
10 s	RTK ⁸	0.12	0.08	0.035	0.020	0.018	0.018	0.040
	PPP	0.16	0.20					
	SP	1.10	0.65					
	Post-Processed ⁹	0.01	0.02	0.020	0.010	0.005	0.005	0.010
60 s	RTK ⁸	3.82	0.73	0.165	0.030	0.030	0.030	0.055
	PPP	3.86	0.85					
	SP	4.80	1.30					
	Post-Processed ⁹	0.15	0.05	0.020	0.010	0.007	0.007	0.012

^{1.} Typical values. Performance specifications subject to GNSS system characteristics, Signal-In-Space (SIS) operational degradation, ionospheric and tropospheric conditions, satellite geometry, baseline length, multipath effects and the presence of intentional or unintentional interference sources. 2. GPS-only. 3. Requires subscription to TerroStar data service. Subscriptions available from NovAtel. 4. Time accuracy does not include biases due to RF or antenna delay. 5. Export licensing restricts operation to a maximum of SIS meters/second. 6. Supplied by IMU manufacturer. 7. Quatage statistics were calculated by taking the RMS of the maximum errors over a minimum of 30 complete GNSS outages. Each outage was followed by 120 seconds of full GNSS availability before the next outage was applied. High accuracy GPS updates (fixed ambiguities) were available immediately before and after each outage. The survey data used to generate these statistics is ground vehicle environments). 8. 1 ppm should be added to all values to account for additional error due to baseline length. 9. Post-processing results using Inertial Explorer. The survey data used to generate these statistics had frequent changes in azimuth.

Contact Hexagon | NovAtel

sales@novatel.com 1-800-NOVATEL (U.S. and Canada) or 403-295-4900 | China: 0086-21-68882300 | Europe: 44-1993-848-736 | SE Asia and Australia: 61-400-883-601. For the most recent details of this product: novatel.com

©2020 NovAtel Inc. All rights reserved. NovAtel is part of Hexagon. All trademarks or service marks used herein are property of their respective owners. NovAtel makes no representation or warranty regarding the accuracy of the information in this publication. This document gives only a general description of the product(s) or service(s) offered by NovAtel, and, except where expressly provided otherwise, shall not form part of any contract. Such information, the products and conditions of supply are subject to change without notice.